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Abstract

We study the robust estimation of the edge probability p in the Erdös-Rényi random graph model
under adversarial perturbation of vertices. We define a new class of adversarial models, the (q, ε)-
adversarial model, which naturally generalizes to corresponding definitions for (q, ε)-oblivious
and (q, ε)-omniscient adversaries, analogous to the ε-adversarial framework. This new model
allows us to explore robustness across varying levels of adversarial strengths while maintaining a
unified framework for analysis.
In the presence of a (q, ε)-oblivious adversary, we propose a novel algorithm that runs in O(n)
time and guarantees |p − p̂| ≤ O(1/ 4

√
n) with probability at least 1 − 1√

n
, representing a sig-

nificant improvement in both efficiency and accuracy compared to existing methods designed for
ε-omniscient adversaries. Existing methods either have a slower runtime with a comparable error
guarantee or a similar runtime with a worse error guarantee. Furthermore, we introduce an iter-
ative algorithm that uses variance-based filtering to identify and remove corrupted vertices. This
approach empirically demonstrates strong performance and achieves a runtime of O(εn3). Work
is ongoing to establish theoretical guarantees for this method.

1. Introduction
The Erdös-Rényi graph model is a fundamental framework in network theory and probability, commonly used for studying

random graphs [2]. It is constructed by independently connecting each pair of n vertices with probability p [3]. Despite
its simplicity and inability to fully represent the complexity of real-world networks, the Erdös-Rényi model serves as a
foundational tool for analyzing network properties. Applications span various domains, including social, biological, and
communication networks [2]. This paper investigates a scenario where an adversary corrupts an ε-fraction of the vertices in
an Erdös-Rényi graph. The objective is to estimate the original edge formation probability p given the corrupted graph.

1.1. Problem Setup

In this paper, we are primarily concerned with the Erdös-Rényi random graph model which was first formally defined by
Edgar Gilbert in 1959 and independently rediscovered by its namesakes Erdös and Rényi later that year [3] [4]. Notice that
the p value of the Erdös-Rényi graph has a direct impact on the degree distribution of the graph which follows a Binomial
distribution B(n− 1, p) [5]. The expected degree of any given vertex in the graph is (n− 1)p, since each vertex is connected
to n− 1 other vertices with probability p.

Refer to Figure 1 for an example of an Erdös-Rényi graph with n = 10 vertices and p = 1/2.

Definition 1.1. The Erdös-Rényi random graph model G(n, p) is a probability distribution over graphs with n vertices,
where each edge is included independently with probability p.

The central challenge of this paper is to estimate the true edge probability p of a graph G ∼ G(n, p) in the presence of
adversarial corruption. Specifically, we consider an adversary A capable of corrupting up to an ε-fraction of the vertices and
producing a corrupted graph,A(G). The adversary can alter the structure of the graph by modifying any edge that is incident
to a corrupted vertex, including both adding and removing an edge.

With this setup, we build on two ε-adversaries proposed by Acharya, Jain, Kamath, Suresh, and Zhang [1] with our own
(q, ε)-adversary.
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Figure 1. Example of an Erdös-Rényi graph G(10, 1/2)

ε-omniscient adversary: The adversary knows the true value of the edge probability p and observes the realization of the
graph G ∼ G(n, p). They then choose the set of corrupted vertices and rewire the edges of these corrupted vertices.

ε-oblivious adversary: The adversary knows the true value of the edge probability p. They must choose the set of corrupted
vertices and the distribution of edges of the corrupted vertices without the realization of the graph G.

(q, ε)-omniscient adversary: The adversary knows the true value of the edge probability p and observes the realization of the
graph G ∼ G(n, p). They then choose the set of corrupted vertices, and the edges of the corrupted vertices are rewired
with a new edge probability q.

(q, ε)-oblivious adversary: The adversary knows the true value of the edge probability p. They must choose the set of
corrupted vertices and the distribution of edges of the corrupted vertices without the realization G. However, the
adversary can choose to rewire the edges adjacent to the corrupted vertices with a new edge probability q.

Despite this adversarial perturbation, we aim to estimate the true edge probability p. While this might initially seem
straightforward, given that the adversary is limited to corrupting an ε-fraction of corrupted vertices, the impact is more
complex. Specifically, corrupting a single vertex alters the degree distribution of the uncorrupted vertices. In other words,
when the adversary perturbs the edges connected to corrupted vertices, it indirectly creates or removes edges incident to
uncorrupted vertices as well. Consequently, the observed p value in the corrupted graph can deviate significantly from the
true p value of the original graph prior to corruption.

The primary metric we seek to optimize is
|p− p̂|,

the difference between the theoretical p value of the graph and the robust estimation on the corrupted graph, p̂.

1.2. Related Work

On our particular problem, we examined a paper by Acharya, Jain, Kamath, Suresh, and Zhang [1] that introduced the
ε-omniscient adversary and proposed the naive mean, naive median, the Prune algorithms, for both the mean and the median,
and the Spectral algorithm.

The naive mean and median algorithms estimate the edge probability p using the degree distribution of the corrupted
graph. In an uncorrupted graph, the mean and median degrees of the vertices are expected to be (n − 1)p. The naive
algorithm calculates the mean or median degree of the vertices in the corrupted graph and normalizes this value by dividing
it by (n− 1), yielding an estimate for p.

The Prune algorithm removes an ε-fraction of the vertices from the top and bottom of the degree distribution—the extremal
vertex degrees—and then estimates the edge probability p based on the remaining vertices with the mean and median of the
pruned degree distribution. By removing the extremal vertex degrees, Acharya et.al proves that the pruned mean would have
an error proportional to O(ε2) and the pruned median would have an error proportional to O(ε). The algorithm has a runtime
of O(n log(nε)) to find the ε-fraction of vertices with the highest and lowest degrees [1].

The Spectral algorithm is based on the fact that the metric ∥(A − pS)S×S∥2 is small for when S is a set of uncorrupted
vertices. Here pS := (

∑
i,j∈S Ai,j)/|S|2; this is the measured p value of the sub-graph GS—the graph that consists of

vertices in S. Intuitively, this metric should be small for uncorrupted subsets because the expected value of the entries of
the adjacency matrix is p for uncorrupted vertices. The Spectral algorithm estimates the edge probability p by minimizing
this norm by removing vertices in S that contribute to increasing this norm. We can find these vertices by computing the
top eigenvector of (A − pS). Eventually, we will get a set of vertices that appear to be uncorrupted and estimate the edge
probability p based on the mean of the degree distribution of these vertices.
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1.3. Contributions

This paper introduces the (q, ε)-adversarial model, extending the ε-adversarial framework to encompass varying levels
of adversarial strength under a unified analysis. We propose three robust algorithms for estimating the edge probability
p: the Mean-Adjusted Median, the Bias-Corrected Mean-Adjusted Median, and the Variance-Based Filtering method. Our
contributions include:

1. Developing a novel Mean-Adjusted Median algorithm with a runtime of O(n) and theoretical guarantees on its error
bound.

2. Enhancing the Mean-Adjusted Median with a Bias-Correction mechanism, leading to improved accuracy.

3. Designing a Variance-Based Filtering algorithm for identifying corrupted vertices, supported by empirical evidence.

2. Notation
G(n, p): Erdös-Rényi random model with n vertices and edge probability p.

A(G): Perturbed graph with a fraction ε of corrupted vertices.

p̄ and p̃: Normalized mean and median of the degree distribution.

d̄ and d̃: Mean and median of the degree distribution.

s2: Variance of the degrees of the graph.

σ̂2: Variance of the degrees of the perturbed graph.

deg(v): Degree of vertex v

3. Mean-Adjusted Median
In this section, we propose an algorithm based on the median and mean of the degree distribution for robustly estimating

the edge probability p. Since the median is more robust to outliers than the mean for (q, ε)-oblivious adversary, the perturbed
median of the degree distribution consistently tends closer to the median of the distribution prior to adversarial corruption
than the corresponding mean values. Thus, we derive our Mean-Adjusted Median algorithm by analyzing this difference
between the median and the mean.

Plotting out a histogram (Figure 2) of the degree distribution of the graph altered by the (q, ε)-adversary, we can see that
the median of the degree distribution is roughly two times closer to the mean of the original degree distribution than the mean.
Since the mean of the original degree distribution is (n − 1)p, in order to derive p̂, we divide an estimator of the original
degree distribution by a factor of n − 1. This leads us to consider using the difference between the mean and the median in
order to find p.

The resulting algorithm for the Mean-Adjusted median is described in Algorithm 1.

Algorithm 1 Mean-Adjusted Median
Require: Laplacian matrix L, epsilon ε
D ←Degrees of vertices using L
p̄← normalized mean
p̃← normalized median
return (2−ε)p̃−p̄

1−ε

For the empirical and theoretical results presented in this paper, we adopt the (q, ε)-oblivious adversary.

Definition 3.1. Let G ∼ G(n, p). The (q, ε)-oblivious adversary randomly selects a subset B ⊂ V of corrupted vertices
with |B| = εn and rewires edges adjacent to B according to a new edge probability q, such that:

3



P((u, v) ∈ E′) =


q, if u ∈ B or v ∈ B,

1, if u, v /∈ B and (u, v) ∈ E

0, if u, v /∈ B and (u, v) /∈ E

where E′ is the edge set of A(G).

While the (q, ε)-adversary is not as powerful as the ε-omniscient adversary, it can still significantly alter the graph’s
structure and simulate major shifts in connectivity similar to those caused by the ε-omniscient adversary. Therefore, evalu-
ating whether the Mean-Adjusted Median algorithm can accurately estimate the edge probability p under the influence of a
(q, ε)-adversary serves as a robust test of the algorithm’s resilience and offers a valuable direction for further study.

Theorem 3.2. Given a graph perturbed by a (q, ε)-adversary with ε < 0.5, the Mean-Adjusted Median algorithm has a
runtime of O(n) and a guaranteed error of

|p− p̂| ≤ O

(
1
4
√
n

)
with probability at least 1− 1√

n
.

Proof. Let D′ be the degree distribution of the perturbed graph. We then calculate the normalized mean p̄′ and the normalized
median p̃′ of the D′ by taking the mean and median of D′ and dividing by n−1. Both the mean and median can be computed
in O(n) time. Finally, we run an O(1) operation to return the mean-adjusted median. The algorithm has a runtime of O(n).

The error of the algorithm is given by the absolute difference between the mean-adjusted median and the true edge
probability p. We start by examining the degrees of the vertices in the graph, which are directly proportional to the edge
probability p of the graph.

Let d̃′ and d̄′ be the median and mean of D′. Let η = p− q, d̂ := (2−ε)d̃′−d̄′

1−ε , and p̂ := d̂
n−1 .

By Lemma A.5 in the Appendix A, p̂ is a random variable such that E[p̂] ≈ p− εη+(2ε−ε2)
Sign(η)

2a

(1−ε)(n−1) where

a =
1− ε√
2πσX

+
ε√

2πσY

e
− (µX−µY )2

2σ2
Y .

Here,

µX = ((1− ε)n− 1)p+ εnq;

σ2
X = ((1− ε)n− 1)p(1− p) + εnq(1− q);

µY = (n− 1)q;

σ2
Y = (n− 1)q(1− q).

Figure 2. (n− 1)p plotted along with the mean and median of the altered distribution
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Then we observe that

p− p̂ = (p− E[p̂]) + (E[p̂]− p̂) ≈ (E[p̂]− p̂) +
εη + (2ε− ε2)Sign(η)2a

(1− ε)(n− 1)
.

By the triangle inequality,

|p− p̂| ≤ |E[p̂]− p̂|+

∣∣∣∣∣εη + (2ε− ε2)Sign(η)2a

(1− ε)(n− 1)

∣∣∣∣∣ ≤ |E[p̂]− p̂|+
ε+ 2ε−ε2

2a

(1− ε)(n− 1)
.

In the proof of Lemma A.6, we showed that a ≥ 1
2
√
πn

, which implies 1
a ∈ [0, 2

√
πn]. As a result,

|p− p̂| ≤ |E[p̂]− p̂|+ ε+ (2ε− ε2)
√
πn

(1− ε)(n− 1)
≤ |E[p̂]− p̂|+ 8ε√

n

Moreover, as n → ∞, the bias εη+(2ε−ε2)
Sign(η)

2a

(1−ε)(n−1) ∈
[

εη
(1−ε)(n−1) ,

εη+(2ε−ε2)
√
πn

(1−ε)(n−1)

]
goes to zero. Thus, the mean of p̂ ap-

proaches p.
By Lemma A.6, we have Var(p̂) ≤ 64 1+

√
n+n

n2 ≤ 256
n since n ≥ 1. Using Chebyshev’s inequality, for any δ > 0,

Pr(|p̂− E[p̂] ≥ δ) ≤ Var(p̂)

δ2
≤ 256

δ2n
.

Hence, with probability at least 1− 256
δ2n ,

|p− p̂| ≤ |E[p̂]− p̂|+ 8ε√
n
≤ δ +

8ε√
n
.

Letting δ = 16
4
√
n

, we conclude that with probability at least 1− 1√
n

,

|p− p̂| ≤ 16
4
√
n
+

8ε√
n
≤ O

(
1
4
√
n

)
as desired.

4. Bias-Corrected Mean-Adjusted Median
In the previous section, letting p̂ denote the output of the Mean-Adjusted Median algorithm, we showed that the expected

value of p̂ is approximately

E[p̂] ≈ p−
εη + (2η − η2)Sign(η)2a

(1− ε)(n− 1)
.

Although the bias diminishes as n increases, we aim to remove this bias entirely. However, the bias term depends on ε, p, q,
and n. While ε and n are known, p and q are unknown quantities.

Due to the relative weakness of the (q, ε)-oblivious adversary, we can compute E[p̄′] as a function of p, q, ε, and n. By
Lemma A.1, we have

E[p̄′] =
E[d̄′]
n− 1

= p− 2εη + ε2η − η(ε− ε2)

n− 1
.

Rewriting this,

E[p̄′] = p

(
1− 2ε+ ε2 − ε− ε2

n− 1

)
+ q

(
2ε− ε2 +

ε− ε2

n− 1

)
.

We can then express q as a function of p, ε,E[p̄′], and n:

q =
E[p̄′]− p

(
1− 2ε+ ε2 − ε−ε2

n−1

)
2ε− ε2 + ε−ε2

n−1

= p+
E[p̄′]− p

2ε− ε2 + ε−ε2

n−1

.
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For large n, the sample mean, p̄′, which we can compute given the perturbed graph, closely approximates E[p̄′], and p̂ is
a good estimation of p with high probability as established in Theorem 3.2, p̂. Thus, we define an estimator for q:

q̂ = p̂+
p̄′ − p̂

2ε− ε2 + ε−ε2

n−1

.

Using p̂, q̂, ε, and n, we estimate η as η̂ := p̂ − q̂ and a by â. Using η̂ and â, we are then able to estimate the bias term
εη+(2η−η2)

Sign(η)
2a

(1−ε)(n−1) . Finally, instead of returning p̂, we return the adjusted estimator

p̂∗ := p̂+
εη̂ + (2η̂ − η̂2)Sign(η̂)2â

(1− ε)(n− 1)
.

The resulting algorithm for the Bias-Corrected Mean-Adjusted Median is described in Algorithm 2.

Algorithm 2 Bias-Corrected Mean-Adjusted Median
Require: Laplacian matrix L, epsilon ε
D ←Degrees of vertices in L
p̄′ ← normalized mean
p̂← MEAN-ADJUSTED-MEDIAN(L, ε)

q̂ ← p̂+ p̄′−p̂

2ε−ε2+ ε−ε2

n−1

η̂, â← estimation of η, a using p̂, q̂, ε, n

return p̂+
εη̂+(2η̂−η̂2)

Sign(η̂)
2â

(1−ε)(n−1)

While p̂∗ is not strictly unbiased due to the approximations, it is effective in reducing the bias.
We empirically test the Bias-Corrected Mean-Adjusted Median algorithm and find that it consistently outperforms the

original Mean-Adjusted Median algorithm, achieving improved accuracy in estimating p. The analysis can be found in
Section 6.

5. Variance-Based Filtering
In this section, we propose a variance-based algorithm for robustly estimating the parameter p on an adversarially corrupted

graph A(G). The key idea is that the variance of the degree distribution of the vertices in A(G) can provide insight into
which vertices have been corrupted. Thus, we can study the difference in variance between the perturbed sample graph and
the expected variance, assuming a binomial distribution. Even in an adversarially perturbed graph, the degree distribution
of the subgraph consisting of the uncorrupted vertices follows a binomial distribution. Therefore, the observed variance
of such a subgraph should equal the theoretical variance. However, the degree distribution of the vertices in A(G) may
not follow a binomial distribution. The variance-based filtering algorithm seeks to uncover this subgraph of uncorrupted
vertices by minimizing the difference in the theoretical variance and the observed variance. Formally, we define s2 =
1

n−1

∑
v∈V (deg(v)− d̄)2 where V denotes the set of vertices. Similarly, we define σ̂2 = np̂(1 − p̂) where p̂ denotes the

mean of the degree distribution assuming a binomial distribution. On an unperturbed graph, since the degrees of the vertices
roughly follow a binomial distribution,

∣∣s2 − σ̂2
∣∣ will be small, with high probability. We exploit this fact in Algorithm 3.

This iterative algorithm seeks to remove vertices that cause the greatest difference to the variance. Assuming we start with
a graph G ∼ G(n, p), we remove the vertex that maximizes:

max
v∈V

∣∣∣s2G(V \{v})
− σ̂2

G(V \{v})

∣∣∣ .
Since we know that in an unperturbed graph, |s2 − σ̂2| is small with high probability, removing the vertex that causes the
greatest deviation with this term would enable us to reduce the difference in the observed and expected variance, ultimately
converging on a set of vertices where this term is minimized. It is important to note, though, that the vertices that minimize
this difference may not always converge to the true set of uncorrupted vertices. We implement this removal process εn times
in order to remove an ε-fraction of the vertices, simulating removing the corrupted vertices. However, since we minimize
the difference between the variances, the subgraph that remains has a degree distribution that is the best candidate among all
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Algorithm 3 Variance Algorithm
Require: Laplacian matrix L, epsilon ε
n←number of vertices
V ←set of all vertices
while t = 0, t < εn do

for vertex v in V do
Compute subgraph after removing v using L

Compute and store
∣∣∣s2G(V \{v})

− σ̂2
G(V \{v})

∣∣∣ for the given vertex v

end for
x← maxv∈V

∣∣∣s2G(V \{v})
− σ̂2

G(V \{v})

∣∣∣
V ← V \ x

end while

subgraphs to follow a binomial distribution after εn vertex removals. The time complexity of this variance-based filtering
algorithm is O(εn3) since we iterate εn times and in each iteration, we simulate removing every vertex, which takes O(n)
time, and calculating the variance on this new subgraph, also O(n) time.

6. Results
To evaluate these different models on estimating the parameter p, we compare the mean-squared error across the methods

on the (q, ε)-adversary. Since the spectral method is bounded by ε < 1/60, we evaluate the experiments in Figure 5 with an
ε = 0.01 and the experiments in Figures 3, 4, 6 with an ε = 0.1 [1]. For each data point, we run each method on 20 trials
and take the average of the estimates for a holistic measure of the mean-squared error.

Figure 3 displays a comparison of the mean-squared error across six different methods: the naive mean, naive median,
prune-then-mean, prune-then-median, mean-adjusted median, and bias-corrected mean-adjusted median algorithms. From
Figure 3, we observe that as the number of vertices in the Erdös-Rényi graph increases, the empirical error of the naive mean
and median algorithms remains fairly stable. This is because the error of these algorithms scales with regards to ε and is not
correlated with n [1].

Figure 4 shows a more focused depiction of the more robust mean and median-based algorithms from 3. Empirically,
all of these algorithms scale inversely with respect to n since the mean-squared error decreases as the number of vertices n
increases. We notice the Bias-Corrected Mean-Adjusted Median algorithm performs significantly better than the plain Mean-
Adjusted Median algorithm, empirically demonstrating that we can successfully remove the bias term from Mean-Adjusted
Median algorithm.

Figure 5 compares the Mean-Adjusted Median algorithms with the Spectral Method and the Variance-Based filtering
method. Due to computational reasons, we limit running the Spectral method on graphs with less than 500 nodes. We notice
that the Spectral Method and the Variance-based Filtering method perform better than the Mean-Adjusted Median method.

Finally, figure 6 displays all of the datapoints for the variance-based filtering algorithm with the 20 trials shown for a given
n. The line plot displayed takes the mean error of these 20 trials to illustrate a general trend in the error as the number of
vertices increases. It is important to note that the error in this figure is the absolute error, rather than the mean-squared error.

Methods Runtime Authors
Mean/Median O(n) Acharya et al.
Prune then Mean/Median O(n log(εn)) Acharya et al.
Spectral Method Õ

(
εn3
)

Acharya et al.
Mean-Adjusted Median O(n) Lee et al.
Bias-Corrected Mean-Adjusted Median O(n) Lee et al.
Variance Method O(εn3) Lee et al.

7. Conclusion
In this work, we introduced a novel adversarial framework, the (q, ε)-adversary model, and proposed three algorithms

for robust estimation of the edge probability p in adversarially perturbed Erdős-Rényi random graphs: the Mean-Adjusted
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Figure 3. ε = 0.1, p = 0.3, q = 0.6 Figure 4. ε = 0.1, p = 0.3, q = 0.6

Figure 5. ε = 0.01, p = 0.3, q = 0.6 Figure 6. Each dot represents a trial; ε = 0.1, p = 0.3, q = 0.6

Median, Bias-Corrected Mean-Adjusted Median, and Variance-Based Filtering algorithms. By extending the adversarial
models proposed in prior research, our models tackle adversarially corrupted graphs using the mean, median, and the variance.

The theoretical analysis in Theorem 3.2 establishes that the Mean-Adjusted Median algorithm guarantees a bounded
error of O

(
1
4
√
n

)
with high probability, while maintaining an efficient runtime of O(n). This gurantee highlights that on

the (q, ε)-oblivious adversary, the Mean-Adjusted Median algorithm outperforms the naive mean and median algorithms.
The Bias-Corrected Mean-Adjusted Median builds on this foundation by addressing bias, leading to improved accuracy in
empirical evaluations. Additionally, the Variance-Based Filtering algorithm effectively identifies corrupted vertices, albeit
with a higher computational cost of O(εn3).

We present empirical evaluations of the mean-squared errors and runtime comparisons of these algorithms, focusing
on their performance against the (q, ε)-adversary. Our results confirm the theoretical upper bound for the Mean-Adjusted
Median, showing |p− p̂| ≤ O(1/ 4

√
n), while highlighting the practical advantages of our proposed methods over baseline

techniques. Furthermore, the empirical results demonstrate that these methods outperform existing techniques in practice,
such as prune-then-mean/median and the spectral method by Acharya et al., in both error and runtime efficiency when applied
to (q, ε)-oblivious adversaries.

Our findings provide valuable insights into designing robust algorithms for graph parameter estimation under adversarial
perturbations. Future work could focus on extending the theoretical guarantees of the proposed algorithms to ε-omniscient
adversaries. Appendix B includes proofs of lemmas that could serve as a foundation for establishing these guarantees.
Another promising direction involves investigating applications of these methods in real-world networks.

Heon is the MVP
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A. Proofs for Mean-Adjusted Median Algorithm
In this section, let D′ be the degree distribution of the graph perturbed by the (q, ε)-oblivious adversary. Let d̄′ and d̃′ be

the mean and median of D′, respectively.

Lemma A.1. E[d̄′] = (n− 1)p+ ε(1− 2n)η + ε2nη where η := p− q.

Proof. By definition, for v ∈ R′,

E[deg(v)] = E

 ∑
u∈R′,u̸=v

Xuv +
∑
u∈S′

Xuv

 = ((1− ε)n− 1)p+ εnq

and for v ∈ S′,
E[deg(v)] = (n− 1)q.

Therefore,

E[d̄′] =
1

n

(∑
v∈R′

E[deg(v)] +
∑
v∈S′

E[deg(v)]

)

=
1

n

(∑
v∈R′

(((1− ε)n− 1)p+ εnq) +
∑
v∈S′

(n− 1)q

)
= (n− 1)p+ ε(1− 2n)η + ε2nη.

Letting D′ = {D′
1, . . . , D

′
n}, let D′

1, . . . , D
′
(1−ε)n be the degrees of the uncorrupted vertices and D′

(1−ε)n, . . . , D
′
n be the

degrees of the corrupted vertices.
Let X = U +W where U ∼ Binomial(εn, q) and W ∼ Binomial((1− ε)n− 1, p), and Y ∼ Binomial(n− 1, q). Then

the uncorrupted sample is drawn from the distribution of X and the corrupted sample is drawn from the distribution of Y .
As n grows large, the dependence of pairwise sample asymptotically approaches 0, so we may assume that the samples are
drawn iid from X and Y , respectively.

We now observe that for large n, X and Y can be approximated using the normal distribution due to the Central Limit
Theorem. Hence,

X ∼ N(µX , σ2
X), Y ∼ N(µY , σ

2
Y )

where

µX = ((1− ε)n− 1)p+ εnq;

σ2
X = ((1− ε)n− 1)p(1− p) + εnq(1− q);

µY = (n− 1)q;

σ2
Y = (n− 1)q(1− q).

For the remainder of our analysis, we proceed under this simplifying assumption.
Thus, we have a sample of size n drawn from the mixture distribution

Z :=

{
X w.p. (1− ε)

Y w.p. ε.

Lemma A.2. Var(d̄′) =
(1−ε)σ2

X+εσ2
Y +ε(1−ε)(µX−µY )2

n

Proof. We have

Var(d̄′) =
Var(Z)

n
=

(1− ε)Var(X) + εVar(Y ) + ε(1− ε)(µX − µY )
2

n

as desired.
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Lemma A.3.
E[d̃′] ≈ µX − ε

Sign(η)

2a

where a := (1− ε)/
√

2πσ2
X + ε ε√

2πσY
e
− (µX−µY )2

2σ2
Y .

Proof. We know that the expected median E[d̃′] of D′ satisfies:

(1− ε)FX(E[d̃′]) + εFY (E[d̃′]) = 0.5 (1)

where FX and FY are the CDFs of X and Y , respectively.
We now approximate the CDFs using a Taylor expansion. Since ε is small, we linearize around the median of X . Since

X is normal, the median of X is µX . Letting ∆ = E[d̃′]− µX , then

FX(E[d̃′]) = 0.5 +

∞∑
k=0

f
(k)
X (µX)∆k

and
FY (E[d̃′]) = FY (µX) + fY (µX)∆ +O(∆2) ≈ FY (µX) + fY (µX)∆

where fX and fY are the PDFs of X and Y . Since X is normal, we know that the f (k)(µX) = 0 for k > 0. Hence,

FX(E[d̃′]) = 0.5 +
1√
2πσ2

X

∆.

Substituting the expansion into Equation 1, we know

(1− ε)

(
0.5 +

∆√
2πσ2

X

)
+ ε (FY (µX) + fY (µX)∆) = 0.5.

Simplifying and solving for ∆, we have

∆ = −εFY (µX)− 0.5

a

where

a := (1− ε)/
√
2πσ2

X + εfY (µX) =
1− ε√
2πσ2

X

+
ε√

2πσY

e
− (µX−µY )2

2σ2
Y ,

implying that

E[d̃′] ≈ µX − ε
FY (µX)− 0.5

a
. (2)

We now express FY (µX)− 0.5 in terms of standard normal variables. Letting

z =
µX − µY

σY
=

(n(1− ε)− 1)η√
nq(1− q)

,

then FY (µX) = Φ(z) where Φ is the standard normal CDF. Then

FY (µX)− 0.5 = Φ(z)− 0.5.

Substituting back into Equation 2, then E[d̃′] is

E[d̃′] ≈ µX − ε
Φ(z)− 0.5

a
.
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We now observe that assuming q ∈ (0, 1), z = (n(1−ε)−1)η√
nq(1−q)

≈ Sign(η)C
√
n for some constant C > 0. For z ≥ 3, we

know Φ(z) ∈ [0.99, 1], and for z ≤ 3, we know that Φ(z) ∈ [0, 0.01]. Consequently, Φ(z)− 0.5 ≈


0.5 if p > q

−0.5 if p < q

0 if p = q,

with

the approximation being tighter for increasing n. Then,

Φ(z)− 0.5 ≈ Sign(η)

2
.

Therefore,

E[d̃′] ≈ µX − ε
Φ(z)− 0.5

a
≈ µX − ε

Sign(η)

2a

as desired.

Lemma A.4.
Var(d̃′) ≈ 1

4na2

where a = (1− ε)/
√
2πσ2

X + εfY (µX).

Proof. Again, assuming that our samples are drawn i.i.d., for large n, the sample median of i.i.d. draws from a continuous
distribution with PDF fZ at its median E[d̃′] (where FZ(E[d̃′]) = 0.5) has an asymptotic normal distribution. Using the delta
method on the central limit theorem, we know that

Var
(
d̃′
)
≈ 1

4nfZ(E[d̃′])2
≈ 1

4nfZ(µX)2
=

1

4na2
.

We claim that p̂ := d̂
n−1 where d̂ := (2−ε)d̃′−d̄′

1−ε is a good estimator of p. We first show that the expected value of p̂ is
close to p and that the variance is also small.

Lemma A.5. E[p̂] ≈ p− εη+(2ε−ε2)
Sign(η)

2a

(1−ε)(n−1) .

Proof. We first find E[d̂]. By Lemmas A.1 and A.3, we have

E[d̂] = E

[
(2− ε)d̃′ − d̄′

1− ε

]

=
(2− ε)E[d̃′]− E[d̄′]

1− ε

≈
(2− ε)

[
µX − εSign(η)

2a

]
− [(n− 1)p+ ε(1− 2n)η + ε2nη]

1− ε

= (n− 1)p−
εη + (2ε− ε2)Sign(η)2a

1− ε
.

Because p̂ := d̂
n−1 , then

p̂ ≈
(n− 1)p− εη+(2ε−ε2)

Sign(η)
2a

1−ε

n− 1

= p−
εη + (2ε− ε2)Sign(η)2a

(1− ε)(n− 1)

as desired.
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Lemma A.6. Var(p̂) ≤ 64 1+
√
n+n

n2 .

Proof. We first find bounds for σ2
X , σ2

Y , (µX−µY )
2, and a. We know that ε ∈ [0, 0.5) and p, q ∈ [0, 1]. Then ε(1−ε), p(1−

p), q(1− q) ≤ 0.25.
We then observe that

σ2
X = ((1− ε)n− 1)p(1− p) + εnq(1− q)

≤ np(1− p) +
nq(1− q)

2

≤ n

4
+

n

8

≤ n

2
.

We also have that
σ2
Y = (n− 1)q(1− q) ≤ n

4
.

We then have that

(µX − µY )
2 = (((1− ε)n− 1)p+ εnq − (n− 1)q)2

≤ (np+ nq/2)2

≤ 4n2.

Finally, we observe that

a =
1− ε√
2πσX

+
ε√

2πσY

e
− (µX−µY )2

2σ2
Y

≥ 0.5√
2πσX

[σ2
X ≤ n/2] ≥ 1

2
√
2π
√
n/2

≥ 1

2
√
πn

.

We now bound Var(d̃′) and Var(d̄′). Using Lemma A.4 and a ≥ 1
2
√
πn

, we observe that

Var(d̃′) =
1

4na2
≤ 1

4n
(

1
2
√
πn

)2 = π.

Using Lemma A.2 and our previously found bounds, we observe that

Var(d̄′) =
(1− ε)σ2

X + εσ2
Y + ε(1− ε)(µX − µY )

2

n

≤ n/2 + n/8 + n2

n
≤ 1 + n

≤ 2n.

We know that by the Cauchy-Schwarz inequality, |Cov(X,Y )| ≤
√
Var(X)Var(Y ) for any random variables X,Y .
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Hence,

Var(d̂) = Var

(
(2− ε)d̃′ − d̄′

1− ε

)

=
1

(1− ε)2
Var

(
(2− ε)d̃′ − d̄′

)
=

Var((2− ε)d̃′) + Var(d̄′) + 2Cov((2− ε)d̃′, d̄′)

(1− ε)2

≤
Var((2− ε)d̃′) + Var(d̄′) + 2

√
Var((2− ε)d̃′)Var(d̄′)

(1− ε)2

≤ (2− ε)2π + 2n+ 2(2− ε)
√
2πn

(1− ε)2

≤ 16π + 8n+ 16
√
2πn

≤ 64(1 +
√
n+ n).

As a result, we know that

Var(p̂) = Var

(
d̂

n− 1

)
=

Var(d̂)

(n− 1)2
≤ 64

1 +
√
n+ n

n2

as desired.

B. Proofs for Variance Algorithm
Lemma B.1. Let F be the subgraph of uncorrupted vertices. Then |pF−p| ≤ 1√

n
with probability at least 1−2 exp

(
−(1− ε)2n

)
.

Proof. Let NF := |F | =
(
(1−ε)n

2

)
. Since each of the NF edges of F is included independently with probability p, the

number of edges in F , EF , follows a binomial distribution:

EF ∼ Binomial(NF , p).

Then the empirical edge probability

pF =
EF

NF
.

Because µ := E[EF ] = NF p and the binomial distribution is the sum of independent Bernoulli distributions, by the Hoeffd-
ing inequality,

Pr(|pF − p| ≥ t) = Pr(|EF − µ|/NF ≥ t) ≤ 2 exp(−2NF t
2).

Letting t := 1√
n
, then

Pr

(
|pF − p| ≥ 1

n

)
≤ 2 exp(−2NF /n)

= 2 exp

(
−2(1− ε)n((1− ε)n− 1)

2n

)
= 2 exp(−(1− ε)((1− ε)n− 1))

= 2 exp(−(1− ε)2n) exp(1− ε)

≤ 2 exp(−(1− ε)2n).

Therefore,

Pr

(
|pF − p| ≤ 1

n

)
≥ 1− 2 exp(−(1− ε)2n)

as desired.
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Lemma B.2. Let F be the subgraph of uncorrupted vertices. Then |σ̂2
F − σ2

F | ≤ O (
√
n) with probability at least 1 −

2 exp(−(1− ε)2n).

Proof. By Lemma B.1,

|σ̂2
F − σ2

F | = ((1− ε)n− 1)|pF (1− pF )− p(1− p)|

≤ ((1− ε)n− 1)

∣∣∣∣√n− 2p
√
n− 1

n

∣∣∣∣
≤ n

∣∣∣∣√n− 2p
√
n− 1

n

∣∣∣∣
≤
∣∣√n− 2p

√
n− 1

∣∣
≤ O(

√
n)
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